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ABSTRACT

A linear-programming model was constructed to allocate the catch of salmon among the days of the
salmon run. The objective of the model was to derive a management schedule for catching the salmon
which would result in maximizing the value of the landings given certain constraints. These con­
straints ensured that cannery capacity was not exceeded, and that escapement of both male and fe­
male fish was "adequate." In addition to considering the allocation of the catch in the primal problem,
the dual problem considered the shadow prices or marginal value of the various sizes of fish, eggs,
and cannery capacity, thus enabling the manager to view his decisions in light of the marginal values
of these entities. As an example, the model was applied to a run of sockeye salmon in the Bristol Bay
system. In the particular example, which was chosen to replicate the 1960 run, the additional value
of the catch owing to optimality amounted to an ex-vess!'l value of a few hundred thousand dollars.
In addition it appeared that the required processing time could be J:educed by several days. The op­
timum allocation was obtained through conformance to the linear-programming model. The cost of
this conformance was not, however, determined.

The Pacific salmon fisheries have been cited as
an example of irrational conservation (Crutch­
field and Pontecorvo, 1969). Much of this ir­
rationality is reflected in the dissipation of
a sizable fraction of the available economic
rent, a situation which results from the open­
access nature of the fishery and legislated in­
efficiency. The remedy for this situation is
to alleviate the open-access and inefficiency
problem. Such alleviation would require the
dissolution of rather formidable institutional
problems. In the present paper, we examine
the salmon problem from a slightly different
vantage point than Crutchfield and Pontecorvo.
We examine the salmon problem under the
status quo; we do not consider the optimal
amount of gear or its efficiency (this should
not, however, be construed as reflecting any
diminution in the importance of these prob­
lems); rather we consider, as an interim ap­
proach, whether it is possible, under the strin­
gent condition of knowing in advance the
structure of the run, to increase the value of
the fish on the dock by optimally allocating- the
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catch among the days of the run.
The traditional approach to salmon manage­

ment might be considered, at the risk of several
simplifications, as consisting of (1) forecasting
the magnitude of the run; (2) setting an escape­
ment goal and a catch implied by the forecast
and the escapement; and (3) daily fishing
closures and other devices which allocate the
catch in varying quantities to the days of the
run. The traditional approach, then, also in­
volves an allocation of the catch to the days
of the run. In the traditional approach, the
allocations are usually based on the experience
of management biologists. Although the ob­
jectives of their allocations are not always
clearly and explicitly stated, there is a tendency
for the primary objective of management to be
simply the attainment of the escapement goal.
Our approach is to use the theory of linear pro­
gramming to advise on a non-intuitive optimum
allocation of the salmon catch among the days
of the run where the objective of management
does not explicitly involve escapement. Rather,
we develop our allocation strategy to maximize
the value of the catch on the dock given a va­
riety of constraints which include the necessity
for a given number of fish to escape the fishery.
The objective of maximizing the value of the
fish on the dock and the constraints explicitly
define the objectives of the management scheme.
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We consider these problems in three additional
sections. In the first, we describe the linear­
programming allocation model, which we be­
lieve to be applicable, with simple modifications,
to a variety of salmon management situations.
In the second, we consider how the model might
be applied to a run of salmon in the Naknek­
Kvichak system of Bristol Bay, Alaska. As an
example, we choose data from the 1960 run
to that system and obtain an optimum allocation
of large and small, male and female fish, on each
day of the run to the daily catch. This optimum
allocation served to maximize the value of the
fish on the dock subject to constraints which
ensured that the catch did not exceed the daily
run, that the catch would be less than the can­
nery capacity, and that an "adequate" escape­
ment, both in terms of the number of eggs and
sex ratio, passed the fishery. Thus, in addition
to managing the run by a non-intuitive optimum
allocation and satisfying an escapement goal,
we also considered the quality of the run in terms
of its sex and age composition. In order, how­
ever, to achieve this optimum allocation we
needed certain data on the structure of the run
in advance and we also needed a mechanism
by which we could select large and small male
and female fish. It would most likely be im­
practical to have either a precise prediction of
the daily run or an ability to select, with high
precision, large or small, male or female fish.
We show that even if we had the necessary data,
a technique for precise selection of the various
entities of fish, and maintained the 1960 escape­
ment and sex-ratio conditions, optimum alloca­
tion would yield us a catch having a value of
several hundred thousand dollars more than the
actual catch. Thus given the cost of obtaining
the necessary information to perform the op­
timum allocation and the constraints extant in
1960, it is questionable whether biological man­
agement could yield a better allocation than that
which was obtained. This serves to re-empha­
size the approach of Crutchfield and Pontecorvo,
indicating that the system is most sensitive to
variables which lie outside the objective and
constraint equations specified in the present
paper. On the other hand, our results show
that it is possible, at least in terms of the model,
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to reduce the number of days during which the
cannery operates and yet process the same num­
ber of fish. Furthermore as previously indicated,
we constrained our example to fit the statistics
of the 1960 run and thus we had, in our ex­
ample, a nearly 1: 1 sex ratio; but as we indi­
cate later, we could have caught a considerably
larger number of male fish and still would have
had sufficient male fi~h in the escapement to en­
sure the efficient production of fertilized eggs.
And finally the model was quite sensitive to de­
creasing the escapement but unfortunately there
is little guidance in the literature which would
indicate the optimum escapement for the Nak­
nek-Kvichak system and furthermore there ap­
pears to be little hope of learning the magnitude,
in the reasonably near future, of the optimum
escapement for the Naknek-Kvichak system.
Thus evaluation of the cannery processing time,
catch problem, and relaxation of sex ratio and
escapement constraints might result in an ad­
ded value to the catch which would make some
attempts at allocation practical. We also, in
the second section, place some stress on in­
terpretation of the shadow prices of the var­
ious variables in the problem. This is of in­
terest to operations researchers because it
provides an example, in addition to those con­
ventionally used, of an application of the inter­
pretation of the linear-programming primal­
dual relation. The shadow prices are of interest
to the fishery manager because from them it is
possible to impute values to the various resources
under the manager's control, and, in making a
decision, the manager can thus consider these
values which, as we show, are not always intui­
tively obvious. In the third and final section
we conclude the paper with a general discussion
of salmon management in a linear-programming
setting.

MODEL

Most linear-programming models generally
involve finding values Xi which maximize (or
minimize) an objective function 2. CiXi, subject
to a set of constraints each of which has the
form ~fiiXi ~ Lj, where the inequality can be
in either direction or can, in fact, be an equality.
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The Pi's and the Lj's are constants appropriate
to a particular problem. The details of the LP
(linear-programming) procedure can be found
in the many treatises on the subject (e.g., Gass,
1964) or in most texts on operations research
(e.g., Hillier and Lieberman, 1967).

In our application of the LP model, we max~

imize the following objective function
M N

Z = L L Ci/'(U, (1)
;=1 j=1

where M refers to the total number of age-sex
categories and N refers to the days of the run.
The variable Xij is the number of fish caught
in the ith entity on the jth day of the run and
Cij corresponds to the value of the fish caught
in the ith entity on the jth day (Table 1). The
age-sex category classification results from the
fact that salmon runs are comprised of a va­
riety of age-groups. Because each age-group
is usually of a different average size, the indi-

M

N

Xii

R..
OJ

Kj

T

TABLE I.-Linear program model notation.

- The total number of age-sex categories.

- The total number of days in the run.

- The number of fish in the ith age~5ex category which are
caught on day j of the run.

- The value of a fish caught in the ith age-sex category on
day j of the run.

- The number of fish in the ith age-sex category which run post
the fishery on day i of the run.

- The capacity, in numbers of fish, of the canneries on day i
of the run.

- The total seasonal capacity of the canneries in numbers of fish.

- The number of fish of the ith age·sex category in the escape-
ment on day j of the run.

- The average number of eggs in each fish of the ith age-sex

category.

_ The total number of egg5 contained in the escapement and
catch.

viduals in each age-group also have a different
average value which we denote by Cij. It should
be mentioned that size is not the only criterion
which can be used for classification. For ex­
ample, in the Naknek-Kvichak run of Bristol
Bay, the sex of the fish can also be used be­
cause within an age-group the male fish tend to
be larger than the female fish and thus more
valuable in terms of weight of fish-flesh; but,
on the other hand, the eggs of the females are
a valuable commodity and thus the per-pound
value of females may be greater than the per­
pound price of males. If the value of the fish
were constant during the course of the run, we
could replace the Cij with Ci and the allocation
proLlem would become rather uninteresting.
But the value, however, does tend to vary dur­
ing the course of the run. One reason for this
is a deterioration of the quality of fish, as in­
dicated by declining oil content and reduction
in color intensity with the progression of the
run. Another way in which Cij could vary is
that the average value of the fish on a par­
ticular day would tend to vary during the course
of the run because of a within-entity trend in
the average size of the fish during the course
of the run; this, however, is not considered in
the present paper. It is obvious that, if we
had sufficient information, we could establish
a large number of different Cij'S.

As indicated previously, equation (1) is max­
imized subject to a variety of constraints. For
the salmon problem, the first set of constraints is
rather obvious and constrains the catch, of any
entity, on any day, to be less than, or equal to,
the number of fish in that entity in the run.
These constraints are of the form

E - The minimum number of eggs required in the escapement.

..1 - The total number of males In the escapement and catch.

F - The average fecundity of the female age-sex categories, ex-

pressed in number of eggs.

H -- The sex ratio desired in the escapement, expressed as the
number of females per male.

Li-The number of fish of the ith age-sex category desired in
the season's escapement.

Si - The number of fish in the fotol seoson run of the ith age-sex
category.

P( j) - The proportion of the run that arrives by day j of the run.

p'(i) - The proportion of the run that arrives on day j of the run.

(2)

Xij is always ;;. 0 and Rij is the number of fish
of the ith entity which run past the fishery
on the jth day. There can be as many as M X N
constraints of this form, but in some applica­
tions, either the number of entities or the num­
ber of days will be collapsed owing to either the
nature of the problem or a lack of information.
Nate also we can easily "close" the fishery for
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(6)

any entity or all entities on any day simply by
setting the appropriate Rij = O.

The second set of constraints constrains the
catch on any day to be less than the daily ca­
pacity of the canneries. Thus, we have the set
of constraints,

T is the egg complement of the escapement and
the catch. Now if we need a minimum number
of eggs to represent the escapement, a quantity
which we denote by E, we must have

II aiWii ~ E,

M

I Xii <S Ki
i=1

(3)
So substitution of (6) into (5) yields the con­
straint set conformable to the Xij'S of our other
constraints, viz.

II UiWU t- IIuiXU = T (5)

N

The constraint is redundant if K <S I Kj.
.i=1

and hence is only used when the season's ca­
pacity is less than the sum of the daily capa­
cities, i.e.,

where K j is the capacity of the cannery or can­
neries on the jth day. Another form of this
constraint might be incorporated in situations
such as in the Bristol Bay fishery, which has a
short season, is remote from supply points, and
thus has a finite seasonal capacity; these con­
straints can be expressed by

(8)

(7)

(9)

IIUiXii <S T-E.

" EX HL...Wi/· <S. F

We can see that by using the same reasoning we
could construct a constraint set which would
constrain'the egg complement to be less than
some maximum egg complement.

Our next constraint involves the sex ratio of
the spawning fish. The utility of allowing a
particular egg complement to escape the fishery
could be negated by not allowing a sufficient
number of males to escape for the purpose of
fertilizing the eggs. In order to ensure that
an adequate number of males escape the fishery,
we formulate the necessary constraint by noting
that

where in this particular equation the W's refer
to the number of males in the escapement and
the X's to the number of males in the catch and
M to the total number of males in the run. Now
to satisfy our constraint, we must have

where the sum extends over all male entities
and days of the run; F is the average fecundity
of the female entities in the run, and H is the
desired male to female sex ratio. Substitution
of (9) into (8) then yields the desired con­
straint

(4)

N

K <S I Kj.

J=I

M N

I I Xii <S K.
i=1 j=1

The next set of constraints results from the
need to ensure that an adequate number of fish
escape the fishery and are thus permitted to
spawn. We formulate this constraint in terms
of the egg complement of the number of females
escaping the fishery rather than the number of
females escaping per se or the total number
of fish (males and females) escaping.

In order to formulate this constraint set, we
define T as

where ai is the average number of eggs in each
fish in the ith entity, Wij is the escapement of
fish in the ith entity on the jth day and thus

(10)
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This constraint can also be formulated in a va­
riety of ways.

In addition to escapement goals established
in terms of eggs and a sufficient number of males
to fertilize the eggs, we desired to establish, for
some sample problems, escapement goals in
terms of total numbers of fish of each entity
in the escapement; this would greatly simplify
the simulation of the actual escapements for any
historic salmon season. Hence, we developed
the constraint

(11)

/II

maximize I CiXi

i=/

11/

subject to I aijX i ~ hi
i=1

J= I.···;n (14)

where we have used slightly different notation
than in the salmon problem, but the analogue
between (14) and the salmon problem should,
nevertheless, be quite clear. If (14) is the
primal, then the dual of this primal is

11/

subject to I au Yi ~ Ci

)=,

where L; is an escapement goal set for entity
i which would ensure escapements identical with
any historic year. To make (11) conform to
our constraint set, we note that

minimize
11/

I by.I .I
)=1

where Wij and Xij are the escapement and catch
(respectively) of entity i on day j and Si is the
total season's run of entity i, we Can substitute
(11) into (12) and get the constraint in the
proper form:

Thus a seasonal limit can be placed upon the
catch of any entity i.

As indicated earlier, once the objective func­
tion and the constraints have been formulated,
then optimization of the objective function, given
the constraints, is a standard procedure out­
lined in some detail in the literature, and, with
a computer facility, is a relatively simple task.
There are, however, interpretations which are
of further interest than the solution of the ob­
jective function. These interpretations rest in
the primal-dual relationship of the LP problem.

In order to demonstrate this relation, we will
denote a general form of the primal problem as

Iwu + IxU = Si
J j

IX'i ~ Si - L(
J

(12)

(13)

i=I. ... . /1/ (15)

In the primal we are allocating scarce resources,
the bj's (number of fish in the run, cannery
capacity, egg complement, and male fish), among
thei activities (which consist in our problem
of catching a particular entity of fish on a par­
ticular day). The intensity of the activity is
Xi, the catch of the ith entity on the jth day
and the "profit" per unit of the activity is, of
course, Cj. It might be mentioned at this point
that most LP computer codes provide as out­
put the value of slack variables which in (14)
is the difference between the right-hand side
and the left-hand side of the constraint equa­
tions. The slack variables have a rather im­
portant interpretation for the salmon problem
in that the slack variable in the run constraint
(2) is the escapement; in the cannery con­
straint (3), it is the unused capacity of the
cannery which we might want, in viewing the
problem from a different context, to minimize;
in the egg constraint (7), it is the number of
eggs which are not caught that could be caught
-another quantity which we might wish to
minimize-and finally we have the slack var­
iable associated with constraint (10) denoting
the number of males which are not caught, but
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could be caught, and which we might, similarly,
wish to minimize. Thus, for example, we simul­
taneously derive, by virtue of the LP model, as
we have formulated it, both the escapement and
the catch.

Now, in the dual, we can place unit values
on the scarce resources rather than on the levels
of the activities, as in the primal. It is thus
helpful, in making management decisions, to
know the imputed unit value of a unit of cannery
capacity, a large male fish, an egg, etc. These
imputed values are commonly known as shadow
prices and correspond to the optimal values of
the Yj's in (15); they will be discussed briefly
in our interpretation of the salmon model. It
should also be mentioned that we have slack
variables in the dual formulation just as we had
slack variables in the primal.

The dual slack variables can be viewed as
opportunity costs in the sense that if we fail
to meet a constraint, this is an opportunity
foregone; and the dual slack variable then gives
the value foregone by the "bad" management
either of nature (that is, the vagaries induced
in the system which are uncontrollable by the
management agency) or of the management
agency.

Finally, it is worth noting a feature of the
shadow prices vis-a-vis the relation of the right­
and left-hand side of the constraint equations.
If in some solution of a particular problem, the
right-hand side becomes equal to the left-hand
side, then we say the constraint is binding. If
the constraint is binding, then the shadow price
has some positive value, namely the imputed
value of an additional unit of scarce resource;
but if, on the other hand, the constraint is not
binding, then an additional unit of the resource
is "free" within the bounds of the problem for­
mulation-consequently the shadow price of the
free resource is zero.

EXAMPLES BASED ON THE
NAKNEK-KVICHAK RUN

As an example, we have decided to consider
the implications of a LP approach to implement­
ing the management framework of one of the
most important salmon runs in North America,
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the sockeye salmon run to the Naknek-Kvichak
system of Bristol Bay, Alaska. Our approach
was to use the LP model described in the pre­
vious section employing actual data where avail­
able for the constraints and the objective func­
tion. Although we examined behavior of the
model for several of the years for which we
had data, we are presenting in this paper our
partial analysis for the 1960 run only. Initially,
we indicate how we assigned values to the var­
ious coefficients in the problem and then we give
the actual examples.

First, we assigned values to the objective
function (1) which is to be maximized. With
respect to the number of entities in the objective
function, there is a relatively large number of
ocean-age groups represented in the Naknek­
Kvichak run, but the very great majority are
either the relatively large .3 ocean-age fish or
the relatively small .2 ocean-age fish. Because,
as we will see in subsequent paragraphs, the
male fish are valuated differently than the fe­
male fish, we used four entities: male or fe­
male, .2 or .3 ocean-age fish.

Next, in order to assign values Cij to each
entity in the objective function according to the
conventional per-fish management unit, we used
the aforementioned observation that the male
fish in each age group tend to be larger and
hence more valuable than the female fish. On
the other hand, the eggs which are contained
in the females are processed into a caviar-type
product, "sujiko." by Japanese firms in the
Bristol Bay canneries. Thus, the females, be­
cause of the eggs which they contain, are more
valuable than males of the same weight. Taking
these factors into consideration and using an
average ex-vessel value of $O.25/pound, we have
computed the average value for each entity.
These calculations are set forth in Table 2 which
shows, among other things, that the added value
of eggs tends to offset the reduced value of fe­
males relative to males of the same age class.

As indicated previously, the $O.25/pound is
an average value and it should be emphasized
at this point that it is not a computed average
since generally speaking a fixed price is paid
for fish throughout the season. But as we in­
dicated earlier, some fish are certainly more
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Next we needed to determine the quantity, in
the objective function, of N, the number of
days of the run. We utilized an empirical equa­
tion presented by Royce (1965) to obtain both
N and the daily run for each entity Rij. The
function Royce used for each of several years
to describe the temporal change in the Naknek­
Kvichak catch is

PkU) - I- -I-+-~~~~k+-bk.i) (16)

_ 1.9
"CI).

'-

usually begins around June 27 and ends around
July 15, the decline in value appears to be
centered on July 4.

In order to arrive at a unique allocation, we
must deduce how the Cij'S for each of the j days
of the run differ from the average of the Cij'S

listed in Table 2. The ideal way of doing this
would be to develop a model which is descriptive
of the value change during the run. Unfortu­
nately, we have no information upon which to
base such a model, so we used three arbitrarily
chosen functions to describe the day-to-day value
change of the salmon. An example of these
is shown in Figure 1.

FIGURE I.-Value functions as objective function co­
efficients in the linear-programming model for entity 2
(large male fishes).

Average
Entity value

ii

Lb. Numbtr $
1 Male 2·ocean 5.1 1.28
2 Male 3-ocean 7.4 1.85
3 Female 2·oceon 4.5 3.700 1.38
4 Female 3-ocean 6.2 4,384 1.84

TABLE 2.-Computations used to determine the value
of each entity classification for the model.

valuable than others. Thus, we deduced that
this fixed price must reflect an average value
and we note, parenthetically, the important
point that the bias and precision (we take the
liberty of using these terms in the statistical
sense even though the estimation procedure may
not be statistical in nature) with which this
average is estimated is a subject of significance
to the management of the salmon stocks.

In addition to the value of salmon differing
among entities, the value of salmon usually de­
teriorates within an entity during a season.
Thus, even though a fixed price is paid fur
salmon during a season, the value decreases
owing to a reduction in quality. For example,
the value of pink salmon may be 25 % less neal'
the end of the run than near the beginning of
the run. The decline in value of red salmon
is not so severe, amounting to a range of about
$O.03/pound from the beginning to the end of
the season. (While a few cents decline in value
during the course of the season may seem to
be a negligible quantity, we must remember that
this factor must be multiplied by the several
pounds in weight of each fish and the several
million fish that are involved in the value re­
duction.) So just as we deduced $O.25/pound
to be an average price among entities, we must
likewise deduce that the values tabulated in
Table 2 are average values for each entity for
the season. In the Naknek-Kvichak run, which

entity I - 5.1 X $0.25 = $1.28;
entity 2 - 7.4 X $0.25 = $1.85;
entity 3 - 4.5 X $0.25 = $1.13;
entity 4 - 6.2 X $0.25 = $1.55.

2 With the price of salmon eggs at $O.50/pound, the additional value
of each female entity can be calculated as follows (it should be noted
that eggs were not processed in 1960):

entity 3 - 3,700 eggs X .061 gjegg -;-
453.6 glib X $0.50 = $0.25

entity 4 - 4,384 eggs X .061 g/egg -;­
453.6 glib X $0.50 = $0.29.

1 With the price of solmon at $O.25/pound. the value of each entity
can be calculated as follows:
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where k specifies the year of the run, ak and
bk are constants, j is time in days, and Pk (j)
is the cumulative proportion of the total catch.
In order to choose N, we defined the fishing
season to be those days for which .05 ~ P (j)
~ .95 and the difference between the initial and
closing day was, to the nearest integral value,
set equal to N.

We also used expression (16) to obtain Rij
from Pk(j) = Pk(j) - Pk(j-1) and then
Rij = PI. (j) Si, where Si is the number of fish
of the ith entity in the run during the year
under consideration. The assumptions involved
in obtaining the Rij'S are (1) the catch is pro­
portional to the "average" run as defined by the
fitted curve (16); and (2) Rij is proportional
to R.j. It should also be mentioned that our
Rij'S are certainly different from the tradition­
ally used Rij'S because the latter are based on
counts made several days after the fish enter
the fishery area. This, however, is not important
in the allocation whereas the relative daily size
of the run is important. We feel that these as­
sumptions are reasonable for the present model
until more accurate information can be obtained
on the behavior of the fish in the run.

On some occasions, the catch in Bristol Bay
is limited by the cannery capacity. This ca­
pacity can be. of course, adjusted by the in­
dustry, but it appears that, according to Math­
ews (1966), 1 million fish per day is a maximum
capacity and we used this value in constraint
equation (2). It would appear that the most
important assumption implicit in the nature of
this constraint is independence among the days;
that is to say, we assume that processing a cer­
tain number of fish on one day does not affect
the processing capacity on the next day. A sec­
ond assumption is that the maximum capacity
is not dependent upon the average size of the
fish processed. There is some question, when the
cannery operates near peak capacity, as to the
effect of overtime payments to cannery employ­
ees and to the effect of processing large numbers
of fish on the quality of the pack.

For our example, of the 1960 run, the total
season constraint was not reached and so this
constraint had no effect on any of the examples
which we present. It is relevant to note, how-
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ever, that if this constraint is needed, then the
maximum number of fish ever processed (up
until 1969) in the Naknek-Kvichak system was
19.1 million.

The next constraint is the escapement con­
straint. Despite the fact that the level of escape­
ment has, for salmon stocks, been the primary
management criterion, there is very little doc­
umentation on the proper escapement level for
many systems. The latest synthesis of the ex­
tensive work on the Naknek-Kvichak system is
addressed to the problem of optimum escapement
in that particular system as well as others
(Burgner, DiCostanzo, Ellis, Harry, Hartman,
Kerns, Mathisen, and Royce, 1969), but un­
fortunately no advice on optimum escapement
is given for the Naknek-Kvichak. Another
study implies, on the basis of limited data, that
escapements beyond about 10 million fish will
not result in any increased productivity of
smolts (Mathisen, 1969: Fig. 6), and thus if we
make a simplifying assumption and assume that
marine survival rates are independent of den­
sity, we can further assume that an increased
return will not accrue from an escapement larger
than 10 million fish (very roughly 20 billion
eggs).

Despite the fact that we do not "know" the
optimal minimal escapement for the Naknek­
Kvichak system, it is clear that there must be
some level which is, in some sense, optimal.
This statement must, of course, be tempered
with our knowledge of the cyclical nature of the
run.

Because of our uncertainty, we examined the
model under a variety of escapement conditions
but keeping under each set, what would appear
to be, according to studies by Mathisen (1962),
a conservatively high male-to-female sex ratio
of at least one male for every three females.
We found in general, as one might expect, that
as we increased escapement we decreased the
value of the catch. The objective function was
quite sensitive to this manipulation, focusing
again upon the need for a well-defined escape­
ment policy. What is not so obvious, however,
as we will see subsequently, is that as we change
the escapement level, we can obtain consider­
able changes in the imputed values of the var-
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ious entities. The 1960 run had an escapement
of 31 billion eggs. We estimate that this escape­
ment was partitioned among the entities as
follows:

Entity 1, 57.5 o/r: or 8,136,000 fish escaping
Entity 2, 43.4 fji' or 210,000 fish escaping
Entity 3, 74.8 ~0 or 7,964,000 fish escaping
Entity 4, 30.8'j( or 389,000 fish escaping

It is interesting to note that in addition to
8,350,000 females which were estimated to have
escaped in 1960, there were, in addition,
8,300,000 males that escaped, signifying a nearly
1: 1 sex ratio.

Our general approach in presenting our par-

ticular 1960 run example was to concentrate up­
on simulating the actual events in 1960 by using
the above run data in equations (13) and (7),
the fecundities listed in Table 2, and the lo­
gistic value function. We also present some
results where we effectively drop equation (13)
and replace it with equation (10) using a low
escapement of 5 billion eggs in order to dem­
onstrate the sensitivity of the model to various
escapement goals.

In Figures 2, 3, 4, and 5, we depict the op­
timum allocation of the catch which we obtained
using the actual 1960 escapement data. The
figures also include the smoothed catches de­
rived from Royce's work. From these figures,
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FIGURE 2.-Year 1960 small male catch allocations
(entity 1). The actual catch allocations are the
smoothed average values obtained from Royce (1965),

FIGUR~; a.-Year 1D60 large female catch allocations
(entity 4). The actual allocations are the smoothed
average values obtained from Royce (1965).
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FIGURE 4.-Year 1960 large male catch allocations
(entity 3). The actual catch allocations are the
smoothed average values obtained from Royce (1965).
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~ Total run of entity 3 females

1000 -l::i Actual catch allocation of 1960

we can observe various properties of the op­
timally allocated catches. For example, in Fig­
ures 3 and 4, the catch allocation of the early
season is identical to the number of fish in the
run. These large male and large female fish
are more valuable than the smaller fish and
most valuable in the early part of the season
because of the value function. Hence, all the
large fish available are caught until the season's
limit for each of the large-fish entities has been
reached. We must be cautious here, however,
because as we point out in our discussion, there
is a possibility of modifying the characteristic
of the run by selective fishing.

In order to interpret Figures 5 and 6, we must
realize that the next most valuable fish are the
small females. The difference in price between
small females and small males increases through
the season. This owes to the fact that small
females weigh less than small males and thus
decrease in value less towards the end of the
season. (Recall that the small females are more
valuable than small males only because of the
eggs which they contain.) We have assumed
that the value of the eggs is constant through­
out the season.

The optimal solution shows that the cannery
is at capacity from days 4 to 10 with as many
small males being caught through day 6 as are
available, and as many additional small females
being caught as the cannery can process. On
days 7 to 9 there are enough fish exclusive of
the small females to bring the cannery to ca­
pacity. However, by day 10, the season's limit
of small males has been caught and small fe­
males must be caught to keep the cannery at
capacity. It must be remembered that the price
difference between females and males is greater
later in the season. For example, if a small
female is caught instead of a small male on the
6th day of the season, the increased profit is
$1.430 - $1.337 = $0.093, where the figures
are the value of small females and small males,
respectively, on day 6 for the logistic value
function which we used. But if a female is
caught instead of a male on day 10, the increased
profit is $1.371 - $1.270 c:= $0.101, for the same
value function. Hence, while the cannery is be­
ing operated to capacity and since the total num-
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FIGURE 5.-Year 1960 small female catch allocations
(entity 3). The actual catch allocations are the
smoothed average values obtained from Royce (1965).
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ber of fish of any entity is fixed by the seasonal
limit, it is more profitable to catch the small,
less valuable, males earlier in the season, which
may seem contrary to the intuition. The impli­
cations of the optimal allocation are considered
in the discussion and conclusions section.
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FIGURE 6.-Shadow prices for daily cannery constraints
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As indicated previously, the shadow prices
are useful in considering various management
implications. We consider, as examples, the egg
shadow prices, the cannery shadow prices, and
the run shadow prices. It might be mentioned
somewhat parenthetically that although the
shadow prices can be explained and interpreted
as in the following paragraphs, in the LP calcu­
lation, they are not found in this manner. The
shadow prices are calculated as simultaneous
results of an iterative solution procedure and
include the results of previous iterations. In
fact, the shadow prices associated with each
constraint at the end of ~ach iteration are used
to determine how to manipulate the matrix to
improve the objective function in the subsequent

iteration. With very involved problems, it might
not be possible to examine the shadow prices
as below, and in any case, only a good deal of
insight into the problem permits their delinea­
tion in this manner. One other caution is that
while applying the following equations to deter­
mine a total increase in profit, care must be taken
to see that the same constraints remain binding
or nonbinding. Once a constraint changes from
binding to nonbinding, the solution basis
changes, also changing the relationships between
variables and constraints.

The increase in value of the objective func­
tion corresponding to a relaxed egg constraint
(allowing one more egg in the catch) is the shad­
ow price associated with the egg constraint. The
shadow price is dependent upon which, if any,
of the constraints in the LP model are binding.
If the egg catch constraint' is not binding, indi­
cating that the value of this catch scheme is not
being limited by this constraint, then the shadow
price associated with the egg constraint is zero.
If the egg catch constraint is binding, shadow
prices associated with the egg constraint, de­
pending upon which of the other constraints
are effective, can be calculated.

The imputed value of an egg, its shadow price,
thus depends on whether the cannery constraint
is binding. Now, if the cannery constraint is
binding on day j (indicating that the max­
imum number of fish are being processed and
the addition of a single or marginal fish to the
processed catch requires that a fish already ex­
isting in the catch must, to maintain the con­
straint, be replaced by the marginal fish), and
the entity 4 run constraints are binding through­
out the season (indicating that all large females
are caught), then the shadow price associated
with the egg catch (ESP) constraint is

ESP = (C3,i - q,;)/3,700

where day j is a day on which the entity 3 run

• Although the egg constraint arose from a minimum
egg escapement requirement, it was necessary to con­
vert it to a maximum egg catch requirement constraint
for use with the LP model, as was described earlier.
It is convenient to think of the constraints in terms of
"egg catch" for purposes of discussing the shadow
prices.
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constraint is not binding, i.e., there are entity
3 females available to be caught. The formula
indicates that allowing the catch of one more
egg essentially allows the catch of 1/3,700 of
an entity 3 female which requires the escape­
ment of 1/3,700 of some other fish since the
cannery constraint is binding. The fish to be
included in the escapement is, of course, the low­
valued entity 1 male.

If the cannery constraint on day j is binding,
but there is a day when the entity 4 run con­
straint is not binding, and since the value of a
large female per egg is greater than the value
of a small female per egg, the value of allowing
the catch of an additional egg is

ESP = (C4,; -CJ,;)/4,384

where day j is a day on which the entity 4 run
constraint is not binding.

If the cannery constraint is not binding on
day j then catching additional females does not
require the escapement of an equal number of
males, or, in other words, the addition of the
marginal fish does not require the release of
a fish extant in the catch. If, however, all the
entity 4 run constraints are binding through
the season, then

ESP = C3,;/3,700

where day j is a day on which the entity 3 run
constraint is not binding. Or, if an entity 4 run
constraint is not binding on day j and again
since the value of a large female is greater than
that of a small female,

ESP = c4,;14,3 84

The next shadow price that we will evaluate is
the increase in value of the ability to process
an additional or marginal fish. The imputed
value of processing a marginal fish is called
the shadow price of the cannery constraint
<CSP) , and we must remember that this mar­
ginal fish only has an imputed positive value
if the cannery constraint is binding. In other
words, we can impute a value to an additional
unit of cannery capacity. Following the format
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above, the shadow prices for the cannery con­
straint can be outlined. For emphasis, we re­
peat again that if the cannery constraint is not
binding, indicating that the value of this catch
scheme is not being limited by this constraint,
then the shadow price associated with the can­
nery constraint is zero. If the cannery con­
straint is binding, shadow prices associated with
the cannery constraint, given which other con­
straints are effective, can be determined.

The objective function will be increased by
an amount equal to the value of the additional
fish which is included in the new catch scheme
(the scheme arising from relaxing the cannery
constraint), and hence the most valuable fish
will be caught. If run constraints are not bind­
ing, the shadow price is

since the large males are the most valuable.
As the run constraints become binding for the
more valuable entities, the shadow price of the
cannery constraints is equal to the value of the
most valuable entity available.

If, for example, the egg catch constraint is
binding as well as the entity 2 run constraint,
the shadow price of the cannery constraint is

( 'SP - (4,384 q \j -C4,; - 3,700 -,I).

The modification of the equation assures that
enough eggs will escape (via entity 3 female) to
enable the catch of the more valuable entity 4
female.

To emphasize the effect of reduced escape­
ments and concomitant binding egg catch con­
straints, we employed the 1960 run model but
dropped equation (13) and used an effective
escapement of 5 billion eggs in equation (10).
If the egg catch constraint is binding as well
as entity 4 run constraints, the only fish avail­
able for catching are the entity 1 (small males),
since no more females can be caught without
violating the egg catch constraint. Hence
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$1.324 - $1.270

(17 - ('1.10

total number of fish processed remains the same
(since season limits are binding for all entities
already), but processing a fish earlier in the
season can result in an increased profit because
of the shape of the value-function curve.

The implications of Figure 6 are quite subtle.
In Figure 6, until day 4, the cannery is not at
capacity, and hence there is obviously no value
associated with an increased unit of capacity.
All fish are included in the c~tch allocation in
the early-season, high-value situation. On day 4
the cannery is at capacity and some fish must
be included in the escapement (excluded from
the catch). Intuitively, we would expect the
highest value fi:;;h to be caught. This is partly
reflected by the continued catch of all entities
2 and 4 fish (the large males and females), but,
keeping in mind the fact that catches in all
entities are being limited by the seasonal limit
constraints and the idea of the decreasing price
differential between entity 3 and entity 1 fish,
entity 3 fish become part of the escapement.
This says that on days 4 to 6, an increase in the
capacity of the cannery will result in an entity
3 fish being caught on that day and a less valu­
able entity 3 fish released later in the season
(to avoid breaking the season's limit constraint).
We can see in Figure 5 that the last day on
which an entity 3 fish can be released is day 11.
The value of an entity 3 fish on day 4 is $1.445,
the value of an entity 3 fish on day 11 is $1.356.
Hence we would expect to gain exactly $0.089
by increasing the cannery capacity by one unit
on day 4. Checking Figure 6, we see this is
exactly what the graph shows for day 4. Days
5 and 6 can be calculated similarly.

On days 7 to 10, entity 1 daily run constraints
are no longer binding, and hence an additional
unit of cannery capacity could result in an entity
1 fish being caught on day 7. From Figure 5
the least valuable entity 1 fish in the catch scheme
is on day 10, and one of these would go into
the escapement. The increased value is

or a profit increase of $0.054. In Figure 6, the

or
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FIGURE 7.-Shadow prices for daily cannery constraints
-an example in which seasonal entity limits are not
imposed.

since to catch a fish of entity i on day i another
fish of entity i must be released on day i* U*IJ')
to avoid breaking the seasonal limit constraint.
Figure 6 gives an example of this situation.
The particular example is taken from the LP
model using the logistic value function and
actual escapements of 1960 by entity (thus the
seasonal limit constraints). In this case, the

As an example of this situation where we have
an escapement of 5 billion eggs, consider Figure
7, where the curve representing the cannery
shadow prices is exactly the value function
curve for entity 1 males. If, however, we con­
trast the 5 billion egg constraint situation with
the actual 1960 run where the seasonal limit
constraints are binding for all entities, then the
improvement in the objective function attributed
to the one unit of increased cannery capacity will
only be equal to
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FIGURE S.-Shadow prices for daily entity run con­
straints-an example in which seasonal entity limits are
not imposed.
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the egg catch constraint is binding. Although
it is not illustrated in the figure, it is essential,
in understanding the problem, to realize that the
entire escapement satisfying the egg escapement
constraint is made up of small (entity 3) females,
and that the entire escapement satisfying the
male escapement constraint is made up of small
(entity 1) males. Also, all fish of all entities
are in the catch scheme on days 1 to 3 and 16
to 18 (all days on which the cannery constraints
are not binding).

In Figure 8, on days 1 to 3, the cannery con­
straints are not binding; and since entity 2
escapement is not being used to satisfy any con­
straints of any form, the run shadow prices on
days 1 to 3 will be equal to the value function
(this can be checked with the values listed in
Appendix Table 2). In addition, since the male
catch constraint is not binding, the run shadow
price for entity 1 is also equal to its value func-

or
$1.371 - $1.356

However, if the cannery constraint is effective
on day j

RSPij = cij'

shadow price of the cannery constraint on day
7 is shown as $0.069. Note, however, that when
an entity 1 fish is released on day 10 that the
cannery is no longer at capacity on day 10,
hence an entity 3 fish could be caught on day 10
if an entity 3 fish was released on day 11. This
is an additional contribution to the shadow price
for day 7 of

or a profit increase of $0.015. Adding this to
the value of catching an earlier entity 1 fish
gives $0.054 + $0.015 = $0.069, and this is
exactly what is shown for day 7 in Figure 6.
Values for days 8 to 10 can be calculated sim­
ilarly.

Next let us consider the run shadow prices
(RSP). The increase in value of the objective
function corresponding to relaxed run con­
straints allowing one more fish of any entity
in the catch is the shadow price of that run
constraint. If the cannery constraint is not
binding, if seasonal run constraints are not used
or are not binding, and if egg catch or male
escapement constraints are not binding, there
is no restriction other than the run constraint
limiting the catch. Since there is a run con­
straint for each entity and day

where entity i* (i* Ii) is the fish that must
escape to allow the catch of entity i since the
cannery is already processing as many fish as
possible. And if the egg catch constraint and/
or the male escapement constraint is binding,
appropriate numbers of fish must be released
when additional fish are caught. As an example
of the behavior of the system when the 5 billion
egg constraint is used, consider Figure 8. As
shown in Figure 8, daily cannery constraints
are binding from days 4 to 15, and, in addition,
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tion for the first 3 days of the season. This
is not true for entity 3 or 4 since the egg-catch
constraint is binding, indicating that no more
eggs can be "caught" without breaking the con­
straint. Hence, when an entity 4 female is
caught on a day 1 to 3 (catching 4,384 eggs),
4,384 eggs must be released on some other day
of the season. This can be done with the smallest
loss by releasing 4,384/3,700 entity 3 females
(entity 3 females have 3,700 eggs). To further
decrease the loss, the above fractional parts of
an entity 3 should be released on a day on which
there are entity 1 or 2 available to be caught,
since this will keep the cannery constraint in­
tact and not violate the male catch constraint
since it is not binding. Remembering that the
price differential between entity 1 and entity 3
increases over the season, it is desirable to catch
the additional entity 1 fish as early as possible,
which is on day 7. Then (note that all of the
larger males are already in the catch scheme) :

a4 a 4
RSP4 1 = C4 I - - C3 7 + c1,7, . a3 • 03

= $1.941 - 4,384 ($1419)3,700 .

+ 4,384 ($1 324)
3,700 .

= $1.828,

which can be seen on the graph as the shadow
price for entity 4 day 1. To calculate the value
of the run shadow price for entity 3 in days 1
to 3, we must realize that catching an entity 3
female requires the release of a female some
other time during the season in order to avoid
breaking the egg catch constraint. Since the
entity 3 females are of lesser value than the
fractional part of an entity 4 female which must
be released to account for the 3,700 extra eggs
caught, the release of this fish on a day on which
there are entity 1 fish available will lessen the
loss. As before, the prIce differential between
entities 1 and 3 is smaller early in the season,
and the earliest date on which an entity 1 male
is available is day 7. For example,

RSP3, I = C3,1 - CJ,7 + CI,7

= $1.453 - $1.419 + $1.324

= $1.358,

which is the value shown in Figure 8.
The run shadow price for entity 1 day 4 re­

sults from the catch of entity 1 on day 4 requir­
ing the release of entity 3 (to avoid breaking
the cannery constraint) which, in turn, allows
the catch of an entity 3 and the release of an
entity 1 on day 11 (the last day on which there
are entity 3's not in the catch scheme). Essen­
tially, what we have done is to exchange the
catch of entity 1 and entity 3 for a time when
the price differential is more favorable.

RSPIA =CI,4 - CJ,4 + CJ,7 - C1,7

= $1.353 - $1.445 + $1.419 - $1.324

= $0.003,

which is the value shown in Figure 8. Run
shadow prices for entity 1 days 5 and 6 can be
figured similarly. For entity 1 days 7 to 15,
the daily run constraints are not binding, and
hence, the run shadow prices are zero.

Run shadow prices for entity 2 days 4 to 15
(still referring to Figure 8) can be calculated
as the difference between the value of an entity
2 and entity 1 on those days. The entity 1 must
be released in order to satisfy the cannery con­
straints for those days. In addition, for days
4 to 6, calculating the value of this new avail­
ability of an entity 1 released in order to catch
an entity 2 is essentially the same situation as
calculating the shadow price of entity 1 on those
days, and hence, the value of the scheme and
the run shadow price is increased by that addi­
tional amount.

Run shadow prices for entity 3 days 4 to 7
in Figure 8 are zero since the run constraints
of entity 3 for those days are not binding. For
entity 3 days 8 to 15, they can be calculated as
follows: If another entity 3 is caught on day 8,
an entity 1 must be released on day 8 to main­
tain the cannery constraints. The catch requires
the escape of an entity 3 fish on another day to
maintain the egg catch constraint. In turn, if
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the release of the entity 3 is on a day which a
male entity is available, that entity can be caught
without breaking the cannery constraint, e.g.,

1. Mole 2-}
2. Mole 3-
3. Female 2 _ Ocean

4. Female 3-
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FIGURE 9,-Shadow prices for daily entity run con­
straints-an example in which seasonal entity limits are
imposed.
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straint was binding; the seasonal limit con­
straint was binding for each entity. Cannery
constraints were binding from days 4 to 10, as
indicated on the figure. In calculating the run
shadow price for any entity on any day, note that
whenever an additional fish is included in the
catch scheme, a fish of that same entity must
be eliminated from the catch scheme on some
other day in order to maintain a valid seasonal
limit constraint for that entity. Thus, for entity
1 days 1 to 3, the run shadow price can be cal­
culated as the value of a fish included on the
day being considered minus the value of the low­
est valued fish of entity 1 in the catch scheme
which must be released to keep the constraints

RSP38 = $1.404 - $1.307 - $1.419 + $1.324
., I

= $0.002,

(Note that day 7 is the first day on which there
is a male entity not already in the catch scheme,
and hence, the price differential is smallest.)

which is that value shown in Figure 8.
Run shadow price for entity 4 days 4 to 15

can be calculated by releasing and catching the
fractional parts 4,384/3,700 of entities 3 and 1
as required to maintain cannery and egg catch
constraints, in a manner similar to that for days
1 to 3. The run shadow prices for the male
entities for days 16 to 18 (those days after the
cannery constraints are no longer binding) are
simply equal to the value of those entity-days,
since they are not involved in satisfying any
constraints of any form. The run shadow prices
for the female entities on these days are a little
more difficult to arrive at, since as they are
caught, an equal number of eggs must be re­
leased, resulting in a slack cannery constraint
which can be filled by catching additional male
entities when available.

Consider, in contrast, Figure 9, where the run
shadow prices are shown for a case in which we
used the actual escapement for the 1960 run in
constraint equation (13). The seasonal limit
constraints are binding for all entities in this
example. It follows that in every case when cal­
culating a run shadow price for an entity day,
the inclusion of an additional unit of any entity
on that day implies that a unit of that entity
must escape on some other day of the season to
maintain the equality of the seasonal limit con­
straint for that entity.

In Figure 9, shadow prices are plotted for the
daily run constraints for the particular example
in which seasonallimlts were imposed to achieve
the actual escapements of 1960. Neither the
egg catch constraint nor the male catch con-
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effective. If this low-valued fish is released on
a day on which the cannery constraint was bind­
ing, then the cannery constraint is no longer
binding and a fish of another entity can be
caught on that day if a fish of that other entity
is available. For example,

RSP\,I = c\,I - cl,IO + c3,10 - C3,11

= $1.362 - $1,270 + $1.371 - $1.356

= $0,107,

which is the value shown in Figure 9. The run
shadow prices for entities 2 to 4 on days 1 to 3
are simply calculated as the value of the entity
on that day minus the value of that entity on
the lowest priced, and hence, last day on which
it is included in the catch scheme. For example,

RSP3,1 = C}.l - C3,ll

= $1.453 - $1.356

= $0,097,

Checking Figure 5, we see that day 11 was the
last day on which entity 3 fish were caught, and
Figure 9 shows that the value ($0.097) is
correct.

Run constraints for entity 3 are not binding
after day 3, so run shadow prices associative are
zero.

To obtain the run shadow price for entity 1
for days 4 to 6, one may, for example, subtract
from the value of entity 1 day 4, the value of
entity 3 day 4 (which must be released to main­
tain the daily cannery constraints), subtract the
value of entity 1 day 10 (which must be released
to maintain the season entity 1 limit), and add
the value of entity 3 day 10 (which can be
caught since an entity 1 has been released on
day 10); or

RSPIA-6 = cIA - C3A - cl,IO + c3,10

= $1.353 - $1.445 - $1.270 + $1.371

= $0.009,

which can be seen in Figure 9.
Run shadow prices for entities 2 and 4 for

days 4 to 6 are similar. For illustration, entity

4 day 4 will be calculated:

That is, the run shadow price of entity 4 day
4 equals the value of entity 4 day 4 less the value
of entity 3 day 4 (to preserve the daily cannery
constraint) less the value of entity 4 day 13 (to
preserve the seasonal entity 4 limit) plus the
value of entity 3 day 11 (since an entity 3 day
4 was excluded, this will be within the entity 3
seasonal limit constraint). Thus

RSP4,4 = $1.930 - $1.445 - $1.780 + $1.356

= $0.061.

This is the- value shown in Figure 9.
The run shadow prices for entity 1 after day

7 are zero since the daily run constraints are no
longer binding. For entities 2 and 4 days 7 to
10, the run shadow prices can be calculated sim­
ilarly. For example,

RSPZ.IO = CZ,IO - q,1O - CZ,II + C3,11'

That is, the run shadow price of entity 2 day
10 equals the value of entity 2 day 10 less the val­
ue of entity 3 day 10 (to preserve daily cannery
constraints) less the value of entity 2 day 11 (the
last day on which entity 2's are caught and,
hence, the cheapest entity 2 which can be re­
leased to preserve the seasonal limit) plus the
value of entity 3 day 11 (since an entity 3 was
released on day 10, this will not fracture the
seasonal entity 3 limit constraint). Thus

RSPZ,IO = $1.836 - $1.371 - $1.812 + $1.356

= $0.009,

which is shown as the correct value in Figure 9.
The run shadow prices for entity 4 on days 11

and 12 are easily calculated since the cannery
constraints are no longer binding and this is
the only entity being caught after day 12. Hence,

RSP4,11 = c4,11 - c4,13

= $1.808 - $1.780

= $0.028.
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It is interesting to note that the run shadow
prices of entity 4 throughout the season are high­
er than those of entity 2 (see Figure 9), even
though the value for an entity 4 is less, for any
given day, than the value of entity 2. This is
due to the optimal catch scheme which has
catches of entity 4 until day 13, while entity 2
catches are only made until day 11. The effect
is that when an additional fish of an entity is
caught early in the season (requiring the re­
lease of a fish of the same entity later in the
season), the entity 2 fish released is from day
11 of value $1.812, the entity 4 fish released
is from day 13 of value $1.780. The value of
the entity scheme then, decreases least (propor­
tionately) for releasing the entity 4 fish.

DISCUSSION AND CONCLUSIONS

It can be seen that the linear-programming
(LP) approach to salmon management, as with
all other modelling approaches, involves a va­
riety of assumptions which are either intrinsic
to the procedure or to the way the procedure
is applied to real-world problems. We have gone
into some detail to show the richness of inter­
pretations that the salmon model affords, and
we believe that the application of this procedure
to salmon management will provide increased
guidance to and widen the spectrum of possible
management decisions. The procedure we have
used for the Naknek-Kvichak run is widely ap­
plicable to a variety of situations both within
the Naknek-Kvichak sockeye salmon setting and
to other salmon runs as well. The setting, the
necessary data, and the formulation of the
problem really depend on the problem situation.
Our purpose was to demonstrate a conceptual
method and we have chosen our data and ex­
amples accordingly.

There will naturally be differences of opinion
in the formulation of the model (that is, dif­
ferent ways of expressing the constraint equa­
tions, some of which are indicated) or the ap­
propriate data which should be used for actual
management situations. These differences can
at times be easily resolved by examining the
sensitivity of the model to various data or
formulation modifications.
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Nevertheless, we should not ignore the as­
sumptions which are implicit in the LP pro­
cedure. These are outlined by, for example, Hil­
lier and Lieberman (1967), and constitute three
concepts that should be recognized. These in­
volve the linearity property of the model, the
problem of divisibility, and the deterministic
nature of the LP approach. In addition, it is
important to consider that the LP approach
models only static situations. First, the linear­
ity property asserts, for example, that the value
of any term in the constraint or objective func­
tion must be directly proportional to the level
of activity involved. Expressed in another way,
the relation between the level of an entity and
its contribution toward filling the constraint or
modifying the objective function must be a
straight line passing through the origin, a con­
dition not often met in practice but frequently
approximated. Furthermore, there should be
no synergism among the terms of the objective
or constraint functions. For example, the unit
catch value on day j for the ith entity, Cij, can­
not be affected, a posteriori, by the unit catch
value on day j-1 for the ith entity Ci, j-I' The
problem of divisibility refers to the fact that
the LP approach that we have used gives solu­
tion values which are not necessarily integers.
A usual practice is to round solutions to the near­
est integer value, thus avoiding the embarrass­
ment of having, e.g., 7,012,342.631 salmon. In
other applications, such as allocating 10 fishing
boats, say, to perhaps three fishing grounds, the
possibility of having non-integer answers may
lead to erroneous conclusions and one of the
integer programming techniques would then be
most appropriate. Next, the deterministic na­
ture of the LP approach is, of course, a deficiency
in the probabilistic real world. The manager
must realize that a full stochastic treatment of
the salmon allocation as an optimization problem
would most likely be a very difficult task. As
alternates, an error structure could be applied
to various elements in the problem, thus enabling
one to explore a variety of probabilistic phe­
nomena, or chance-constrained programming
might be employed. Monte Carlo and simula­
tion approaches might also be utilized but these
are not per se optimization procedures. Finally,
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the static nature of the LP approach provides
a challenge to application in the sense that the
unit values in the objective function, the con­
straints, and the right-hand sides of the con­
straint equations must not only be known in
advance, but also must not change as a result
of any of the allocations in the model,

The above assumptions can be handled in a
variety of ways such as those indicated to handle
problems of the deterministic nature. For ex­
ample, we might, in some instances, use qua­
dratic programming to handle the problem of
non-linearity or dynamic programming or apply
the outlined procedure in real time to handle the
static nature of the programming problem, but
unfortunately these approaches will present
what can be quite complicated computational
difficulties which may, in some instances, be in­
surmountable. It is thus clear that we have
made certain approximations, trading off real­
ism for an easily computable solution which
certainly provides management guidance.

As we implied previously, we do not consider
our departures from realism to seriously affect
the utility of the model to provide guidance for
decision making. Thus we believe that, for ex­
ample, fixing the cannery capacity independent
of the entities involved (or we could consider
the cannery capacity to be fixed at a level which
would accept a reasonable mixture of the en­
tities) or using a simple average fecundity of
the female entities to represent the average
fecundity of the spawning females materially
affects our conclusions. These, however, can
be evaluated in direct applications by a sensi­
tivity analysis.

Having outlined some cautions with respect
to assumptions, we can now examine some of
the indications provided by the various trials
of the procedure. These involve the value of the
fish on the dock, a reduction in processing-season
length, changing value of entities during the run,
and finally future data needs.

First with respect to the value of the total
catch on the dock, we experimented with three
value functions which set the daily value of each
entity. Using the value functions to determine
the value for each entity and day, and the actual
distribution of the catch over the 1960 season,

a total value of the catch was calculated which
corresponds to the use of each of the three value
functions. These values of the actual allocation
of the catch were compared with the value of the
optimal allocation as determined by the linear
program as an indication of the value of op­
timally allocating the catch over the season. The
increased value of the optimally allocated catch
ranged from approximately $350,000 to $420,000
dependent on which value-function curve was
considered. Table 3 shows these results. In
the table, a fourth value function is indicated,
which is simply a straight-line function such
that the value of each entity remained constant
through the season. Each of the other value
functions was determined such that the average
value of each curve was equal to the constant
value for that entity for the season.

TABLE 3.-Comparison of the value of the optional al­
location with the value of the actual allocation of the
catch for the 1960 season.

Value
function 4"

Optimal
allocation $13,787,050 $13,927,860 $13,792,555 $13,517,870

Actual
allocation 13,378,650 13,506,250 13,439,825 13,517,890

Increased
value $ 408.400 $ 421.610 $ 352,730 $ • -20

1 After day 6, the price dropped 3t per pound.
j The price was reduced by subtracting a logistic curve that reduced

the price of each entity by 3; per pound over the season.
3 The price was reduced by subtracting a quadratic curve that reduced

the price of each entity by 3t per pound over the season.
• The price for each entity remained constant through the season (actual

situation.)
Ii Difference due to rounding in the linear programming algorithm.

All three value functions had the effect of
placing emphasis, in the optimal solution, on
catching fish on the early days of the season.
For two of the functions the value for any entity
of fish on a given day is less than the value for
that entity on the previous day. This is not true
in the step function and thus we do not have
a unique allocation, but rather a set of alloca­
tions under the high values and a set of allo­
cations under the low values. But results are
exactly the same; optimal allocations of fish are
identical under the three value functions, al­
though the total value of the catch changes some­
what, according to the exact shape of the value­
function curve. Again, we emphasize that these
gains from allocation can only be obtained by
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knowing in advance of the run the information
that we actually used in the allocation and having
the ability to select the entities in the run as
they are selected in the allocation.

Next, an examination of the 1960 optimal
allocation reflects that this optimal allocation
not only increases the value of the fish on the
dock, it also shortens the length of time which
a cannery needs to operate. Thus, the same
amount of fish could be processed in a shorter
period of time, by the same labor force, etc.
In the optimal allocation for the 1960 run, all
of the fish could have been processed in the first
13 days of the season, 5 days less than the actual
operation. Naturally, we need to assume that
a policy of catching salmon only from the early
part of the run would not affect the genetic
constituency of the stock. Furthermore, we
must be careful here because, as we have em­
phasized in several places, by our LP assump­
tions, we cannot, a priori, let the cannery oper­
ations on day j-l, for example, affect the can­
nery operations on day j and we cannot at least
in our formulation allow operating at peak ca­
pacity to affect quality of the fish or overtime
payments since the variables are external to
our model.

Another indication is that the values of fish
change during the course of the season and that
these values change in rather subtle ways de­
pending upon the "rules" that we set forth (e.g.,
contrast Figures 8 and 9) and that in the fishery
the marginal value of less valuable entities in
Table 2 can be greater than the more valuable
entities in Table 2. These changes in values
need to be acknowledged in any management
scheme.

Thus, it appears that we have the opportunity
to increase the economic efficiency of some salm­
on runs. This is, of course, not a new concept,
having been treated in some detail by, for ex­
ample, Crutchfield and Pontecorvo (1969). Our
approach is slightly different, however, in that
we have concentrated on optimality only from
the point of view of increasing the value, as we
have defined it, of the fish on the dock. Any full
treatment of the management problem must, of
course, consider the distribution of fishing effort
and its ancillary fishing and economic implica-
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tions.
Now if we accept the premise that conserva­

tion is "optimum" allocation of resources in the
times-space stream (cf. Crutchfield and Ponte­
corvo, 1969), and if we observe that mathema­
tical programming provides guidance for optimal
allocation, and note that LP is a special case of
mathematical programming, and suggest that
the kinds of information required to allocate
salmon among the days of the run in an LP
model are not going to be much different from
the kinds of information required for more so­
phisticated programming procedure, then we are
led to the conclusion that perhaps we have not
addressed ourselves to asking, in our research,
the "right questions" concerning salmon man­
agement. Following our argument, it would
then be implicit that the right questions are con­
tained in our formulation of the LP model.
These answers must be feasible to obtain and
they would contain either needed data or doc­
umented policies which would be reflected in
the right-hand side of the constraint equations
and, more importantly, provide an opportunity
for enlightened dialogue. There is unfortu­
nately a cost associated with asking right ques­
tions. This cost involves the cost of doing new
work, or that which inevitably results when ex­
isting research activities are reallocated. Are
these costs worth the expenditure? These, how­
ever, are the kind of questions, the answers to
which can be guided by the LP problem. For
the salmon management model, we impute values
to units of cannery capacity, etc., but, and per­
haps of equivalent importance, we impute a val­
ue, in meaningful terms, to information. Thus,
for our salmon problem, we have cleverly avoid­
ed indicating how we could catch Xij fish for
some i,j. But it is well known that catching can
be approximated because it is possible to catch
salmon in traps (although this has never been
done to any large extent in Bristol Bay) and,
upon visual inspection, to distinguish between
large and small, male and female fish, and doing
this by virtue of ceteris paribus, the allocative
process, we could add about 0.5 million dollars
to the value of the salmon on the dock. This is,
of course, not the full picture, because we would
have to trade off the added value of salmon (it
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is a common opinion that salmon caught in traps
are of better condition and higher value than
the salmon which are taken by gill netting, for
example), the reduction in cannery days used
to process the fish, the cost of building traps,
and the political problems which are described
in some detail in Crutchfield and Pontecorvo
(1969). It would not, however, be difficult to
determine the discounted present value of the
various alternate procedures and thus evaluate
the wisdom of engaging in any. In this eval­
uation, we need not be bound by what are per­
haps extreme solutions such as traps, but we
could examine the value of other selectivity pro­
cedures such as modifying gill net selectivity,
etc. In general, then, we can evaluate the value
of information by approximating that informa­
tion, employing it in the model, and contrasting
the change in the objective function with the
objective function when the information is not
in the model.

Additional information is needed on the pat­
tern of the run. For the earlier years, this is
available in Royce (1965), a publication which
needs to be updated and implemented to obtain
even rough estimates of the temporal movement
of the fish of various entities through the fishery.
This might be quite difficult to accomplish with
present concepts, and the feasibility of a system
which would acoustically monitor the passage
of salmon through the entire river system and
developing a central computer-oriented unit
which would process the signals from all acoustic
units and provide, in real time, through appro­
priate algorithms, rules for catching fish and
making observations on escapement is presently
being explored.

In our model, because of a lack of information,
we used the total run and allocated this propor­
tionately among the days of the fishery to de­
termine the daily run. This emphasizes the need
to have, for the purpose of management, a fairly
accurate preseason guess of the total magnitude
of the run and the Xi/so These guesses are
already being made ana the predictions need
to be judged on the basis of whether the pre­
dictions do better than simply averaging the
run for cycle years and simply averaging the
run for noncycle years and applying these aver-

ages as predictions. The trick then may not be
to estimate the average catch but rather to de­
termine which years are cycle years.

Vv'e have included cannery capacity in a rather
simple way in our model and this is a subject
that also needs additional data since the can­
nery capacity constraint Can be formulated in
a variety of ways. It would be interesting to
explore in a simulation setting the behavior of
the slack variables in the cannery constraint.
This is because it seems quite likely that there
is a positive correlation between the cost of op­
erating a cannery and the magnitude of the
slack variable in the cannery constraint. If the
run was constant from year to year, then it
would be relatively easy to determine an optimal
value for the magnitude of the slack variable in
the cannery constraint. But the run varies con­
siderably from year to year, and so in those
years when the cannery constraint might be too
low, we have an opportunity cost which appears
as a slack variable in the dual formulation of
the cannery constraint. It would seem then that
the best value of the cannery constraint would
be somewhere in between the capacity for a
maximum run and a minimum run and that this
might be investigated by employing the LP
model in a simulation setting.

We have also employed egg and sex ratio con­
straints in our model. The egg constraints re­
quire information on fecundity and escapement.
There is not much information on fecundity but
this should be either easily obtainable or easily
approximated. Again, the static nature of the
LP problem makes it difficult to attribute a val­
ue to an egg for years in the future. This is,
of course, important, emphasizing the need of
thinking not, as is conventionally done, in terms
of the forthcoming year, but rather in terms of,
for example, a series of years maximizing (ct.
Riffenburgh, 1969) economic benefits. In other
words, the utilizers of resources may not be
interested (even though they may think they
are) in management on a year-to-year basis;
rather, they are interested in some long-run sat­
isfactory behavior of the time stream of economic
benefits. Alternatively, though, we must be
cautious of on-the-average management schemes
which are typically presented in fishery appli-
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cations. This is because a particular manage­
ment scheme might be on-the-average quite prof­
itable in the long run but might frequently
completely bankrupt the system for the first 20
years of operation.

The problem of sex ratio is quite important
because it appears that the objective function
would be quite sensitive to selectively decreasing
the number of males in the escapement and thus
increasing the catch perhaps substantially. As
indicated previously, Mathisen's study (1962)
gives us some guidance on this subject and it
would appear that, in some instances, the 3: 1
ratio might be conservative. Furthermore,
it should be mentioned that a year-to-year modi­
fication of sex ratio might be a useful cushion
for approaching stability for some economic as­
pect of the fishery. Finally, the problem of
escapement eludes us because in the wealth of
literature on the subject there appears to be
very little that is useful in setting the egg-min­
imum constraint. It is generally agreed that the
stock-recruitment relation for salmon is the fa­
miliar Ricker-type curve. It is well known that
the variability in these relations is quite large
(in the case of the Naknek-Kvichak run, at­
tempting to draw similarities between stock and
recruitment places tremendous stresses on the
imagination anyhow) and as a consequence, if
the dome-shaped model holds, a minimum escape­
ment set sufficiently, but not unreasonably high,
could, on the average be reducing the return
rather than increasing the return.

It might be difficult even after several years
of setting the minimum escapement value at too
high a level, to detect, owing to the variability
in the system, the effect of this policy. If this
is true, then again we are asking the wrong
questions by studying the stock and recruitment
model per se. We are faced with a system that
is so variable, either intrinsically or in terms of
measurement techniques, or both, that a large
number of data points is required before we can
evaluate the relation between the empirical data
and the theory and then use the theory to predict.
There is but one point a year and so we are
asking nature to "stand still" for a large number
of years. Given these observations and our past
experience, we wonder whether it might not be
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more appropriate for management purposes to
avoid looking at stock and recruitment per se, to
intensify study of the physiology and behavior
of very young stages of fish, and thus examine
fundamental problems of cause and effect, vis­
a-vis the variables that influence the magnitude
of egg production and survival of these eggs
and larvae or other young stages through the
first several months of their life. And finally,
in the meantime, would it be more appropriate
to consider measuring stock and recruitment in
terms of transition probabilities which might
be estimated by computing the median stock
and the median recruitment? Stock sizes which
are below the median would be poor, those which
are above, good, and similarly with recruitment.
The empirical data could then be used to esti­
mate probabilities of good-good, good-poor, poor­
good, and poor-poor transitions. We need not in
this procedure be restricted to medians, but
could in fact use any fractile, and in fact we
need not be restrained by fractiles because we
might want to place the dividing line at some
"optimal value" and explore the consequences.

In conclusion, then, we have formulated a LP
model for salmon runs and have shown how it
might be related to the Naknek-Kvichak run.
We see in this relationship that, given informa­
tion on the structure of the run, we can both in­
crease the value of the fish on the dock and at
the same time reduce processing time. Whether
it is worth obtaining the information in terms
of the indicated data and the ability to select
fish from the run to approach this allocation
and whether decreased processing time is, in
fact, a saving, are questions that must be an­
swered by the processing industry in light of
the increased value of salmon on the dock. If
our estimate of increased value is approximately
correct, we can see that allocation can add an
interesting value to the catch, but far greater
additions could come from reducing the escape­
ment, if this is possible, and alleviating the open­
access related problems. Perhaps the most in­
teresting feature of the model is the richness
of interpretations that LP affords in the salmon
situation and the nature of questions and data
needs raised by the model. Finally, we empha­
size that, as Hillier and Lieberman (1967) note,
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"A practical problem which completely satisfies
all of the assumptions of LP is very rare indeed.
However, the LP model is often the most accu­
rate representation of the problem, which will
yield a reasonable recommendation for action be­
fore implementation is required."
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ApPENDIX TABLE l.-Constants used in value-function
equations for each entity and day of the 1960 run.

Function P I Function 22 Function 31

IPI 1.382 1.365 1.331
Entity 1

bl .153 .153 .000417

IP2 1.998 1.974 1.925
Entity 2

.000583b2 .222 .222

IP3 1.470 1.455 1.425
Entity 3

.135 .000472b3 .135

IP4 1.964 1.944 1.903
Entity 4

.186 .000694b4 .186

1 For entity i on day i,
Value i" ~ IPi, for ; < 6; Value i,; ~ IPi - .03X (weight of
entity i in pounds), for j > 6.

2 For entity i on doy i,
hi

Volue .. ~ Ip· -
I,J t l+r- (4.5 + .5;)

:I For entity i on day i, "2
Value i,i = IPi - bjXJ

ApPENDIX TABLE 2.-Total run, total catch, and value functions for each entity and day of the 1960 season.

-"EI--~I]Io;- ~-]---'-[r-'~EnD Total Total Value . Totol Totol Value

_.,,~__~_Y_ ~~~___ __~~n __ ~_ .:~~~___ function I' E_~:~__~~_ ___r_u_~__ . _______:~~~__~_._ functi~ l'
I 280,351 119,149 1.382 1.362 1.331 1 211,080 53,192 1.470 1.453 1.425
2 368,062 156,426 1.382 1361 1.329 2 277,120 69,834 1.470 1.451 1.423
3 475,118 201,925 1.382 1.358 1.327 3 357,724 90,146 1.470 1.449 1.421
4 600,110 255,046 1.382 1.353 1.323 4 451,832 113,861 1.470 1.445 1.418
5 737,489 313,432 1.382 1.347 1.319 5 555,267 139,927 1.470 1.439 1.415
6 876,389 372,465 1.382 1.337 1.314 6 659,846 166,281 1.470 1.430 1.410
7 1,000,833 425,354 1.229 1.324 1.308 7 753,542 189,892 1.335 1.419 1.405
8 1,092,325 464,238 1.229 1.307 1.301 8 822,427 207,252 1.335 1.404 1.398
9 1,134,780 482,281 1.229 1.288 1.293 9 854,393 215,307 1.335 1.387 1.391

10 1.120,032 476,014 1.229 1.270 1.284 10 843,289 212,488 1.335 1.371 1.383
11 1,050,967 446,661 1.229 1.253 1.274 II 791,289 199,404 1.335 1,356 1.375
12 940,395 399,668 1.229 1.240 1.264 12 708,038 178.426 1.335 1.345 1.365
13 806,344 342,696 1.229 1.230 1.251 13 607,110 152,992 1335 1.336 1.355
14 666,514 283,268 1.229 1.224 1.238 14 501,829 126,460 1.335 1.330 1.343
15 534,438 227,136 1.229 1.219 1.225 15 402,387 101.401 1.335 1,326 1.331
16 418,185 177,729 1.229 1.216 1.210 16 314,858 79,344 1.335 1.324 1.318
17 321,003 136,426 1.229 1.215 1.195 17 241,688 60,905 1,335 1.322 1.304
18 242,797 103,188 1.229 1.214 1.178 18 182,805 46,066 1.335 1.321 1.290

2 I 9,590 5,427 1.998 1.970 1.924 I 24,985 17,289 1.964 1.941 1.902
2 12,590 7,126 1.998 1.967 1.922 2 32,803 22,700 1.964 1.939 1.901
3 16,252 9,199 1.998 1.963 1.919 3 42,344 29,302 1.964 1.935 1.898
4 20,528 11,618 1.998 1.957 1.914 4 53,484 37,010 1.964 1.930 1,894
5 25,227 14,278 1.998 1.948 1.908 5 65,727 45.483 1.964 1.922 1.888
6 29,978 16,967 1.998 1.934 1.900 6 78,106 54,050 1.964 1.910 1.882
7 34,235 19,377 1.776 1.914 1.891 7 89,197 61,724 1.778 1.894 1.874
8 37,365 21,149 1.776 1.890 1.881 8 97,351 67,367 1,778 1.874 1.866
9 38,817 21,970 1.776 1.863 1,869 9 101,135 69,985 1.778 1.851 1.856

10 38,313 21,968 1.776 1.836 1.856 10 99,820 69,075 1.778 1.828 1.845
11 35,950 20,347 1.776 1.812 1.841 II 93,665 64,816 1.778 1.808 1.832
12 32,168 18,207 1.776 1.792 1.825 12 83,811 57,997 1.778 1.792 1.819
13 27,582 14,479 1.776 1.778 1.808 13 71.864 49,730 1.778 1.780 1.804
14 22,800 12,905 1.776 1.769 1.789 14 59,402 41,1 06 1.778 1.772 1.789
15 18,281 10,347 1776 1.763 1.769 15 47,631 32,960 1.778 1.767 1.772
16 14,305 8,096 1.776 1.759 1.747 16 37,270 25,790 1.778 1.763 1.754
17 10,980 6,215 1.776 1.756 1.724 17 28,609 19,797 1.778 1.761 1.735
18 8,305 4,700 1.776 1.754 1.700 18 21,639 14,974 1.778 1.760 1.714

1 After day 6, the price dropped 3¢ per pound.
2 The price was reduced by subtracting a logistic curve that reduced the price of each entity by 3ct per pound over the seaSon.
:l The price was reduced by subtracting a quadratic curve that reduced the price of each entity by 3et per pound over the season.
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